
Securing IPv6 Networks:

ft6 & friends

Oliver Eggert, Simon Kiertscher

Our Group

2

Outline

• IPv6 Intrusion Detection System Project

• IPv6 Basics

• Firewall Tests

• FT6 (Firewall test tool for IPv6)

3

IPv6 Intrusion Detection System

• Partners:

• University of Potsdam

• Beuth University of Applied

Sciences Berlin

• EANTC AG

• Associated Partner:

• STRATO AG

• Funded by the Federal Ministry

of Education and Research

4

IPv6 Intrusion Detection System

Main contributions of the project

1. Test operation of an IPv6 Darknet

2. Honeyd  Honeydv6

3. Snort IPv6-Plugin (IDS/IPS Software)

4. Load tests

5. Protocol tests

5

Test operation of a Darknet

• /48 net, after 9 months 1172 packets captured

• Probably only backscatter traffic

6

Honeyd  Honeydv6

• first low-interaction honeypot which can simulate
entire IPv6 networks on a single host

• based on open source low-interaction honeypot
honeyd developed by Niels Provos

• custom network stack to simulate thousands of
hosts

• new protocols like NDP and ICMPv6 implemented

• updated routing engine to simulate entire network
topologies

• extension header processing implemented

• observe fragmentation based IPv6 attacks

• source code available on www.idsv6.de

7

Snort IPv6-Plugin

• Widely used Open Source NIDS

• Snort IPv6 support technically
yes, but . . .

• Snort IPv6 Plugin (Preprocessor)

• Functionality:
• Reads ICMPv6 messages on the LAN

• Follows network state, i. e. (MAC, IP) of:
• On-link Routers

• On-link Hosts

• Ongoing Duplicate Address Detection

• Alerts on new/unknown hosts and routers

• All IPv6 fields accessible for Snort signatures now
• Basic Header, Extension Headers, Neighbor Discovery Options

8

Load tests

9

Load tests

10

Load tests

11

Load tests

12

IPv6 Basics

13

IPv6 Basics

• IPv4
Optional options
and padding 
Variable header
size

• IPv6
Fixed but bigger
header size

• Options?
 extension
headers

14

Source:
http://www.cisco.com/en/US/technologies/tk648/tk872/images/
technologies_white_paper0900aecd8054d37d-03.jpg

IPv6 Basics - Extension Headers

• Hop-By-Hop Options

• Routing Header

• Fragment Header

• Authentication

Header

• Encapsulating

Security Payload

• Destination Options

• Mobility Header

• No Next Header

15

Source:
http://www.cisco.com/en/US/technologies/tk648/tk872/images/t
echnologies_white_paper0900aecd8054d37d-04.jpg

Firewall Tests

16

Motivation

• What are the RFC requirements for IPv6

firewalls?

• How can you test your firewall in an easy way?

• CĂŶ ͞IPǀϲ RĞĂĚǇ͟ ŚĂƌĚǁĂƌĞ ŬĞĞƉ ŝƚƐ ƉƌŽŵŝƐĞ͍

17

ICMPv6 filtering

• ICMPv6 is like ICMP for sharing information or

error messages

• BUT:

New ICMPv6 types for Neighbor Discovery

Protocol (NDP, the former ARP) and Multicast

Listener Discovery Protocol (MLD)

• Do not drop all ICMPv6 messages mindlessly

18

ICMPv6 filtering

• Non-Filtered messages according to RFC 4890

19

ICMPv6 Type Description

1 Destination Unreachable

2 Packet Too Big

3, Code 0 Time Exceeded

4, Code 1 and 2 Parameter Problem

128, 129 Echo Request/Reply

ICMPv6 filtering

• Optional Filter List

• The rest should be filtered!

20

ICMPv6 Type Description

3, Code 1 Time Exceeded

4, Code 0 Parameter Problem

144, 145, 146, 147 IPv6 Mobility

150 Seamoby Experimental

5-99, 102-126 Unallocated Error Messages

154-199, 202-254 Unallocated Informational Messages

Routing Header (RH)

• Especially RH0 (deprecated since Dec 2007

according to RFC 5095)

 treat it like an unknown RH

• Mobility Routing Header (RH 2) - RFC 3775

21

RH Type Segments left field Behavior

RH 0 ≠ 0 Drop

RH 0 = 0 Forward (ignore header)

RH 2 ≠ 1 Drop

RH 2 = 1 Forward

RH 200 ≠ 0 Drop

RH 200 = 0 Forward (ignore header)

IPv6 Header Chain Inspection

There are 3 basic rules (RFC2460) that govern

the order and occurrence of extension headers

(header chain)

1. Destination Options (DSTOPT) header at most

twice (once before a Routing header and once

before the upper-layer header)

2. All other extension headers should occur at most

once

3. The Hop-by-Hop (HBH) Options header is

restricted to appear only immediately after the

base IPv6 header

22

IPv6 Header Chain Inspection

We test 7 different Header Chains

23

Header Chain Validity

DSTOPT Valid

DSTOPT, DSTOPT Invalid

DSTOPT, RH, DSTOPT Valid

HBH Valid

HBH, HBH Invalid

DSTOPT, HBH Invalid

HBH, DSTOPT, RH, HBH Invalid

Overlapping IPv6 Fragments

RFC 5722 ͞HĂŶĚůŝŶŐ of Overlapping IPv6

FƌĂŐŵĞŶƚƐ͟ describes e.g. a fragmentation

attack and expected node behavior

24

Fragment appearance Behavior

Fragmented packet without overlap Forward

Overlapping, rewriting the upper layer protocol header Drop

Overlapping, rewriting the payload Drop

Overlapping IPv6 Fragments

25

Overlapping IPv6 Fragments

26

Tiny IPv6 Fragments

• A Tiny-Fragment is a fragmented IPv6 packet

where the upper-layer-header is located in the

second fragment

• Firewall has to inspect the second fragment

27

Tiny Fragment appearance Behavior

Upper-layer-header with allowed port number Forward

Upper-layer-header with forbidden port number Drop

Tiny IPv6 Fragments

According RFC 2460 a device has to discard a

packed if not all fragments have arrived within

60 seconds after the arrival of the first fragment

28

Tiny Fragment appearance Behavior

Send the last fragment after 60 seconds Forward

Send the last fragment after 61 seconds Drop

Excessive Hop-by-Hop and Destination Option Options

• Excessive use  denial-of-service attack

• As specified in RFC 4942, every option should

occur at most once, except Pad1 and PadN

• All HBH options have to be processed on every

node they pass

29

Options Profile

Jumbo Payload, PadN, Jumbo Payload

Router Alert, Pad1, Router Alert

Quick Start, Tunnel Encapsulation Limit, PadN, Quick Start

RPL Option, PadN, RPL Option

PadN Covert Channel

• PadN and Pad1 are used to align options to a

multiple of 8 bytes

• Required for DSTOPT and HBH header

• Valid payload of PadN must only contains zeroes

 Abuse as a covert channel

30

Header PadN Behavior

HBH Valid Forward

HBH Invalid Drop

DSTOPT Valid Forward

DSTOPT Invalid Drop

Address Scopes

• A firewall must not forward packets with a

wrong scope address

• The test contains a mix of different

• Multicast addresses

• Link-local addresses

31

Scope Address range

Multicast ff00::/32 - ffff::/32

Link-Local fe80::/16 - febf::/16

FT6

Technical Stuff

32

ft6

ft6 – Motivation

next step: perform the tests

usually tedious, error prone work

aided by a tool

easily reproducable, comparable

enter ft6

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 1 of 25

ft6

ft6 – Agenda

1 overview

2 info on design and implementation

3 live demo

4 v.2: security focus

5 writing your own tests (optionally)

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 2 of 25

ft6

ft6 – Design Goals

easy to configure

graphical user interface

browse tests and results

visual representation

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 3 of 25

ft6

ft6 – Design Goals

open-source (Creative Commons BY-NC-SA 3.0)

can act as a framework for new tests

easy to implement new tests

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 4 of 25

ft6

ft6 – Details

powered by python, PyQt and scapy

works with Linux, Windows 7, OS X

python: rapid developement, easily understandable

PyQt: GUI-framework, available cross-platform

http://www.riverbankcomputing.com/software/pyqt/intro

scapy: great framework for network packet creation

http://www.secdev.org/projects/scapy/

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 5 of 25

http://www.riverbankcomputing.com/software/pyqt/intro
http://www.secdev.org/projects/scapy/

ft6

ft6 – Architecture

Client
(runs client.py)

Server
(runs server.py)

Firewall

ft6 is a client-server application

requires machines on both sides of your firewall

one open port

place machines not more than one hop away from firewall

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 6 of 25

ft6

ft6 – Running ft6

Client
(runs client.py)

Server
(runs server.py)

Firewall

Client and Server exhange control messages

Start / End / Results

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 7 of 25

ft6

ft6 – Running ft6

Client
(runs client.py)

Server
(runs server.py)

Firewall

Client sends packets

Server sniffs

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 8 of 25

ft6

ft6 – Running ft6

Client
(runs client.py)

Server
(runs server.py)

Firewall

Client sends packets

Server sniffs

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 9 of 25

ft6

ft6 – Running ft6

Client
(runs client.py)

Server
(runs server.py)

Firewall

Server sends back list of packets it recieved

Client figures out what went missing and displays result

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 10 of 25

ft6

Live Demo

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 11 of 25

ft6

ft6 version 2: pitfalls

ideal world scenario: tests performed automatically

mismatch between rfc’s intent, your setup, firewall capabilities

ft6’s results may be misleading in some cases

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 12 of 25

ft6

ft6 version 2: pitfalls

Example:

ICMPv6 non-filtered messages include

Packet Too Big, Time Exceeded and Parameter Problem

in our tests: were dropped by some firewalls, marked red in ft6

responses to some previous malformed packet

ft6 doesn’t send the previous packet

firewall more capable than assumed

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 13 of 25

ft6

ft6 version 2: pitfalls

how would you test that?

you can’t (reliably)

too many edge-cases, to many differences across vendors

problem remains: what’s the result of that ICMP test?

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 14 of 25

ft6

ft6 version 2: pitfalls

another example: Routing Header

decision to drop or forward depends upon value of segments-left field.

some firewalls were unable to inspect the field.

all or nothing

firewall less capable than assumed

yet: dropping valid RH is arguably better than forwarding invalid RH

how do we reflect that in ft6?

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 15 of 25

ft6

ft6 version 2: "security focus"

switch from rfc-conformity focus to security focus

if a result is not in accordance with rfc but "more secure":

⇒ no longer red

can’t make it green:

⇒ for example: dropping all RH, kills Mobile-IPv6 feature

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 16 of 25

ft6

ft6 version 2: "security focus"

results:

more yellow, longer explanations

more interpretation required

shows problems of IPv6. Too many what-ifs

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 17 of 25

ft6

ft6 – future work

ft6 is a work in progress

lots of improvement could be done

better results

more tests

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 18 of 25

ft6

Thank You! Questions?

your thoughts: contact@idsv6.de

get ft6 from: https://redmine.cs.uni-potsdam.de/projects/ft6

more info on the project: www.idsv6.de

article in c’t: www.ct.de/inhalt/2013/15/36

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 19 of 25

contact@idsv6.de
https://redmine.cs.uni-potsdam.de/projects/ft6
www.idsv6.de
www.ct.de/inhalt/2013/15/36

ft6

ft6 – Writing your own test

Example: build own test, to see if packets containing the string "randomword"

can traverse the firewall. Requires four steps:

1 create a class for your test

2 implement the execute method

3 implement the evaluate method

4 register your test with the application

(More detailed in ft6’s documentation)

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 20 of 25

ft6

ft6 – Writing your own tests

Step 1: Create a class for your test

class TestRandomWord(Test):

def __init__(self, id, name, description, test_settings, app):

super(TestRandomWord, self).__init__(id, name, description,

test_settings, app)

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 21 of 25

ft6

ft6 – Writing your own tests

Step 2: implement the execute method

def execute(self):

e = Ether(dst=self.test_settings.router_mac)

ip = IPv6(dst=self.test_settings.dst, src=self.test_settings.src)

udp= UDP(dport=self.test_settings.open_port, sport=12345)

payload = "ipv6-qab"*128

packet = e/ip/udp/(payload + "randomword")

sendp(packet)

packet = e/ip/udp(payload + "someotherword")

sendp(packet)

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 22 of 25

ft6

ft6 – Writing your own tests

Step 3: implement the evaluate method

def evaluate(self, packets):

results = []

found_random = False

found_otherword = False

iterate over the packets, filter those that belong to the test

for p in packets:

tag = str(p.lastlayer())

if not "ipv6-qab" in tag:

continue

if "randomword" in tag:

found_random = True

if "someotherword" in tag:

found_otherword = True

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 23 of 25

ft6

ft6 – Writing your own tests

Step 3: implement the evaluate method

evaluate the flags

if found_random:

results.append("Success", "Your firewall forwarded

a packet with a random word!")

else:

results.append("Failure", "Your firewall dropped

a packet with a random word!")

if found_otherword:

results.append("Warning", "Your firewall forwarded

a packet with some other word. That’s very weird!")

else:

results.append("Success", "Your firewall dropped

a packet with some other word. Well done firewall!")

return results

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 24 of 25

ft6

ft6 – Writing your own tests

Step 4: register your test

create test classes, store them in the dictionary

so they can later be called by their id

tICMP = TestICMP(1, "ICMPv6 Filtering", "The ICMP Test",

self.test_settings, app)

...

tRandomWord = TestRandomWord(42, "My Random Word Test",

"Tests for Random Words", self.test_settings, app)

self.tests = dict([

(tICMP.id, tICMP), ..., (tRandomWord.id, tRandomWord)])

Oliver Eggert (Potsdam University) ft6: firewall tester for IPv6 Frame 25 of 25

	ft6

